Гипотеза Коллатца — одна из простых нерешённых задач математики

Гипотеза Коллатца.Эта проблема названа в честь Лотара Коллатца, предложившего ее впервые в 1937 году. Она имеет много других названий, в частности, числа-градины, сиракузская последовательность, проблема 3n+1 и др.). Задача эта имеет очень простую и доступную формулировку, однако до сих пор считается нерешенной.

Для объяснения сути гипотезы берём любое натуральное число n. Если оно чётное, то делим его на 2, а если нечётное, то умножаем на 3 и прибавляем 1 (получаем 3n + 1). Над полученным числом выполняем те же самые действия, и так далее.

Возникающую последовательность чисел еще называют последовательностью градин или просто градинами (поскольку ее числа резко возрастают и падают как градины во время грозы и шторма) или еще «блуждающими числами».

Гипотеза Коллатца заключается в том, что какое бы начальное число мы ни взяли, рано или поздно мы получим единицу.

Например, для числа 3 получаем:

3 — нечётное, 3×3 + 1 = 10
10 — чётное, 10:2 = 5
5 — нечётное, 5×3 + 1 = 16
16 — чётное, 16:2 = 8
8 — чётное, 8:2 = 4
4 — чётное, 4:2 = 2
2 — чётное, 2:2 = 1
1 — нечётное, 1×3 + 1 = 4

Для проверки гипотезы Коллатца на больших числах было запущено несколько проектов распределенных вычислений. По состоянию на 2019 год проверены все натуральные числа меньше чем 1 152 921 504 606 846 976 и каждое из них за конечное количество шагов соответствовало условиям Гипотезы Коллатца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *